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Abstract: Algorithms and experimental techniques for extracting the complex dielectric function of thin films
(monolayers and bilayers) of quantum dots are developed. The algorithms are based on a combination of the
so-called Newton-Raphson method, used in conjunction with a Kramers-Kronig analysis, and are used to
analyze normal-incidence reflectance and transmission measurements of organically passivated silver quantum
dot Langmuir monolayers. Single, unambiguous solutions to the dielectric function were determined for several
particle monolayers and at various stages of compression. A transition of the quantum dot superlattice from
the insulating to a metallic state was observed. When a monolayer of 6-nm-diameter Ag nanocrystals is
compressed to an interparticle separation distance of∼8-9 Å, a negative-valued featureless component of the
real part of the dielectric function is detected. This indicates the onset of Drude-like behavior that is characteristic
of a metallic film. The impact of superlattice disorder on this Drude response is also investigated.

I. Introduction

The optical properties of quantum dot superlattices contain
information concerning the nature and strength of interparticle
coupling within the superlattice. Although there are a large
number of papers reporting on the photoluminescence,1 absor-
bance, and/or reflectance2 from quantum dot solids,3 there have
not been any reports on the complex optical dielectric function
of such materials. In this paper, we present an approach toward
determining the optical dielectric function of Langmuir mono-
layer superlattices of silver quantum dots, measured as a function
of monolayer compression. We include a description of the
experimental measurements techniques, as well as the algorithms
that we utilized to determine a single, unambiguous solution of
the dielectric function from experimental reflectance and
transmittance measurements.

We recently demonstrated that it was possible toreVersibly
tune a monolayer of hexagonally packed, organically function-
alized 3-nm-diameter silver quantum dots (QDs) through the
metal-insulator (MI) transition using the Langmuir compression
technique.4 We presented this work as an example of rational
engineering of a specific electronic property into a QD solid.5

At large interparticle separation distances, the superlattice is a
Mott insulator,6 with a Coulomb band gap described by the

charging energies of the individual nanoparticle lattice sites.7,8

Upon compression, the Coulomb gap disappears and the density
of states (DOS) becomes temperature-independent (down to 20
K) and finite-valued at the Fermi level.9 After the transition to
the metal phase, the superlattice should be characterized by free
electrons, and that behavior should be reflected in the frequency-
dependent complex optical dielectric function (ε(ω) ) ε1(ω) +
iε2(ω)) of the superlattice.

We previously showed that, at low frequencies (10 kHz-10
MHz), ε1(ω) switches from a positive- to a negative-valued
function, indicating the onset of a Drude response, or free
electron behavior within the superlattice.10 The results presented
here are measurements of this same function, but at much higher
frequencies, and represent the firstquantitatiVe measurements
of this MI transition. These results, therefore, allow us to make
comparisons to both theory and related systems, such as
evaporated Ag island films as they pass through the percolation
transition.11 In addition, we find evidence to support the
prediction by Levine and Remacle of a disorder-induced
insulating film that exists between the Mott insulator and the
metallic phase.12 This localized phase has also been directly
observed in recent tunneling spectroscopy measurements on
these types of films.13

In section II we compare the optical properties of bulk Ag
films and of Ag QD monolayers, and we describe the contribu-
tions expected from both bound and free carriers to the complex
dielectric function. In section III we present the experimental
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procedure used to measure compression-dependent reflectance
(R) and transmittance (T) spectra. These data were inverted using
the Newton-Raphson algorithm14,15 in order to determine the
complex index of refraction,n - ik, whereε(ω) ) (n - ik)2,
and this algorithm is described in section IV. Previous workers
used a similar technique to describe the optical properties of
evaporated (and growing) Ag island films and found it to be
unsatisfactory near the percolation threshold.16 There exist
multiple solutions toε(ω) for a given set ofR and T values,
and those solutions are poorly defined whenn andk are nearly
equal, as happens near a MI transition. The result is that the
algorithm cannot distinguish between the various solutions, and
the fit of theR andT measurements to the optical constants is
poor. The practice has been to simply choose the most physically
meaningful of the possible solutions, and even then, the resulting
ε(ω) function is not well defined. We avoided this dilemma by
using a Kramers-Kronig analysis of the data in conjunction
with the inversion technique. This analysis, which is described
in section IV, was mathematically rigorous in that it involved
no approximations, and it led to asingleunambiguous solution
of ε(ω). In section V, we present our results.

II. The Optical and Electronic Properties of Silver and
Silver Quantum Dots

In a bulk metal, the complex dielectric function, at frequencies
from DC to the ultraviolet, is dominated by contributions from
free electrons. In this region the real part of the dielectric
function,ε1(ω), has a negative value. At some high frequency,
known as the bulk plasmon resonance frequency,ε1(ω) will
cross over to positive values. Metals are also characterized by
bound (interband) transitions that contribute to the dielectric
function, although for most metals the bound transitions are only
important at very high frequencies. However, for the one-
electron metals, such as silver, both the free and bound electron
contributions to the dielectric function are important through
the optical and UV frequencies.17 The free electron contribution
to ε1(ω) has a negative value at frequencies below∼8 eV, while
the interband transitions are characterized by a positive-valued
contribution toε1(ω) at all frequencies, with strong resonant
dispersive behavior near 4 eV. When these two components
add together, one measures a totalε1 that has a negative value
up to 3.8 eV (the “effective” bulk plasmonωp), has a (positive-
valued) resonance in the UV, and gradually increases at higher
energies.

In isolated silver QDs, the optical and electronic properties
are quite different from those of the bulk. Low-frequency
conductivity is obviously absent in isolated Ag QDs, which
means thatε1(ω) has a positive value at all frequencies.
Throughout the optical and near-UV regions of the spectrum,
ε1(ω) is dominated by the optically allowed surface plasmon
resonance,ωsp. ωsp describes the collective resonance of the
free electrons within anindiVidual QD and depends on the bulk
dielectric function for Ag, modified for finite size. To a first
approximation,ωsp ≈ ωp/(3)1/2, although in a superlattice of
QDs, classical coupling between adjacent QDs (local field
effects), as well as the size of the individual QDs, affects the
resonance position.2 At the MI transition, the dielectric function
should be further modified by the addition of significant free

electron densitybetweenmultiple sites within the superlattice,
and the result should be an additional negative-valued contribu-
tion to ε1(ω).

The most important distinction between the particle sizes is
related to the single-particle, or (super)lattice site charging
energies,εc ) e2/C(r), whereC(r) ) 4πε0εr. Here, ε is the
dielectric constant of the organic surface groups that surround
the particle,r is the particle radius, and the other symbols take
on their usual meaning. For 3-nm-diameter alkylthiol passivated
Ag QDs, we have measured a charging energy of about 0.3
eV.9 It is this charging energy that leads to the Coulomb band
gap in thesuperlatticeand therefore makes the superlattice a
Mott insulator. For a Mott-type MI transition, when the quantum
mechanical exchange coupling between the particles exceeds
the Coulomb gap, then the system undergoes a transition to the
metallic phase.18 Since the charging energy scales inversely with
particle size, the MI transition is experimentally easier to access
in superlattices composed of the larger quantum dots. Through
the use of a number of experimental approaches (both optical
and transport measurements), we have found that for Ag
particles in the range of 6-8 nm diameter, the MI transition
occurs in the range ofδ ) 9 ( 2 Å, while for 3.0- or 3.5-nm-
diameter particles, the MI transition occurs nearδ ) 6 ( 2 Å.1

Here,δ is the separation between the surfaces of the Ag cores
of adjacent QDs. In addition, we have found that order in the
superlattice isqualitatiVely less important for larger particles.
When a monolayer collapses to a bilayer, the bilayer structure
is characterized by a higher entropy than the monolayer.19

Microscopic inspection of a collapsed film reveals that the
bilayer structure is, indeed, much more disordered than that of
the monolayer. We have never observed the MI transition in a
collapsed monolayer of 3.0- or 3.5-nm-diameter particles, while
the transition is readily observed in collapsed monolayers of 6-
or 8-nm particles. It could be that the spread in lattice site
energies that arises from local chemical environments is smaller
for larger particles.

III. Experimental Section

There are many methods for determining the optical constants of a
sample, including ellipsometry, polarimetry, and multiple oblique angle
of incidence measurements at different polarizations.20 Most involve
multiple consecutiVe measurements. This works well with a sample
that does not change during the time it takes to complete the mea-
surements. However, Langmuir monolayers of Ag QDs each have suf-
ficiently different optical properties thatsimultaneousmeasurements
on a single film during compression were necessary. Because of the
limited amount of space available in the Langmuir trough and the
relative simplicity of the calculations in this geometry, we found that
it was best to measure the transmittance and reflectance at normal
incidence as a function of trough area.

The experimental setup is shown in Figure 1. White light from a
150-W tungsten/halogen lamp was coupled to the Langmuir trough
through a 400-µm-diameter glass fiber optic. The light exiting this fiber
was collimated and sent through a pinhole, which restricted the diameter
of the light spot on the film to less than 1 mm. A color process filter
(Schott, BG37) was used to balance the spectral intensity of the lamp.
The light then passed through a 50/50 beam splitter and was directed
onto the thin film. The light reflected from the film was reflected from
the beam splitter a second time and collected with another fiber optic.
A third fiber optic was immersed in the water subphase beneath the
film to measure changes in transmittance. It was necessary to make a
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tiny “mirror” from a slice of a small steel ball bearing in order to couple
enough light into this transmission fiber, since it was directed
perpendicularly to the incident beam. All immersed components were
cleaned with chloroform between experiments.

The reflection and transmission fibers were connected to two
identical, fiber-coupled UV-vis spectrometers (Ocean Optics). Three
computers were used to collect the simultaneous transmission and
reflection spectra and the surface pressure/area isotherm. The spectral
ranges that gave acceptable signal-to-noise ratios were 388-775 and
860-950 nm.

Prior to carrying out a set of measurements for a particular film, we
collected two sets of controlR andT spectra. The first set was simply
a measurement of the dark counts on both spectrometers, and this was
subtracted from all subsequently collected data sets. The second was a
measurement of theR andT spectra of the water subphase without the
particle monolayer. Because the refractive index of water is well known
throughout the wavelength range studied here, this measurement could
be used to calibrate the spectrometers and the light sources, as well as
to subtract the contribution of the water subphase to theRandT values
measured when a QD monolayer was present. Accurate values for the
percent reflectance and transmittance of the QD films were calculated
by normalizing the collected spectra against similarly collected spectra
for pure water.21

Details of the Ag QD synthesis and the formation and compression
of superlattices of these particles on a Langmuir trough are found
elsewhere.18,22All particles utilized here were size-selected to produce
distributions with widths of 10% or less. The thickness of the Langmuir
film is simply related to the diameter of the nanoparticles and the
number of layers (1 or 2) in the film. The particle diameters were
determined from transmission electron microscopy (TEM) or from the
frequency of the maximum of the surface plasmon (Mie) resonances
of the particles in solution. These resonances were calibrated with TEM
measurements and X-ray diffraction.

The results from the compression of two films are presented here,
although similar results were observed for several other films. Film 1
consisted of 8-nm-diameter particles capped with decanethiol, and film
2 consisted of 6-nm-diameter particles capped with hexanethiol. Figure
2 shows the reflectance, transmittance, and surface pressure measure-
ments as a function of trough area for film 2.

IV. Optical Constants by the Newton-Raphson Method

The results forRfilm and Tfilm at normal incidence were
inverted by computer to obtain optical constants,n andk, where
ε(ω) ) (n - ik).2 We used an approach appropriate for a three-

layer system when multiple reflections in the thin film must be
taken into account.14,15The system consists of three media. The
first is the air, characterized by a real index of refraction,n0.
The second medium is the quantum dot thin film, characterized
by a thickness,d, and by a complex index of refraction,n(ω)
- ik(ω). The third medium is the water subphase of the
Langmuir trough, which has a real index of refraction,n2(ω)17

(we assumek2 ) 0 at these wavelengths). For this model, the
reflectance and transmittance may be found from the following
system of equations:

In Figure 3 we present a contour plot of the reflectance and
transmittance as a function ofn andk. The intersections of the
contours represent solutions to eqs 10 and 11 for a set of
reflectance and transmittance values. The first point to note is
that there are multiple solutions to this system of equations.
Fortunately, we can generally use the thickness of our films to
eliminate all but two solutions to the data. However, those two
solutions are not similar to each other. Without any other
evidence (such as the results of the Kramers-Kronig analysis
presented below), one cannot be sure which solution is correct,
and one must resort to using physical intuition when choosing
a solution. The second point is that in the region of the graph
wheren ) k, the contours are roughly tangential to each other.
In these regions, the algorithm will not resolve accurate values
for n andk. This is because there is a large range ofn andk
values that will produce the sameR and T values within the
precision of the calculation. This problem is not unique to our
system and has similarly plagued measurements of the dielectric
function of evaporated Ag islands as they are grown through
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Figure 1. Schematic diagram of the experimental setup for measuring
the reflectance and transmittance of a QD film as a function of
compression on the Langmuir trough. A white light source is sent
toward the air/water interface. The reflected portion is split off with a
beam splitter (BS), and the reflectance spectrum is collected using a
multichannel array detector. The transmitted portion is reflected off a
mirror at the bottom of the trough, and the transmittance spectrum is
collected on a second array detector. Pressure/area isotherms are
collected simultaneously with these measurements.
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the percolation transition.16 The quality of the solutions is
checked by entering then andk values back into theR andT
equations and comparing the results to the data. Although a
very good solution (it matches to several decimal places) may

be found in then ) k region of the contour plot, the error is
usually at least an order of magnitude worse than in the region
far from then ) k line. To obtain more precise values for the
optical constants in this region, another complementary method
of analysis is needed.

V. Kramers-Kronig Analysis

For this section, we adapted a well-known variation of the
Kramers-Kronig dispersion relations with some slight modi-
fications. The Kramers-Kronig relations are based on the
principle of causality.23 Given a complex function that represents
a physical system, the real part can be represented by an integral
expression involving the imaginary part, and the imaginary part
can be represented as an integral expression involving the real
part. The expression that is relevant here relates the relative
phase,θ(ν0), of the transmitted light, as a function of frequency,
to the transmittance,T(ν0), through the sample.15

Appropriate units must be used for the frequency and thickness
so thatθ is unitless. After the phase is determined from the
transmittance data, both of these values are fit to equations that
relate the real and imaginary parts of the refractive index (n
andk, respectively) to the transmittance and phase as a function
of wavelength,λ:14

where the functionsC(λ) and D(λ) are different from eqs 7
and 8,

Here,ns is the index of refraction of the sample substrate and
may be a function of wavelength.

In principle, one can determine the optical constants from a
singlemeasurement, but, as is apparent from eq 12, one needs
to know the transmittance overall frequencies in order to

(23) Arfken, G. B.; Weber, H. J.Mathematical Methods for Physicists;
Academic Press: San Diego, CA, 1995; p 444.

Figure 2. Experimental results for the film comprised of 6-nm silver
QDs (film 2). Isotherm A shows that the film began to collapse at an
area of about 140 cm2 and formed a continuous bilayer at about 65
cm2. Reflectance (B) and transmittance (C) data were used only from
the regions where the film was a continuous monolayer (points a, b)
(6 nm thick) or bilayer (points c-e) (12 nm thick), where the thickness
of the film was certain. The reflectance was observed to increase steadily
upon compression until the MI transition was reached (60 cm2), at which
point it dropped (curve e), while the transmittance dropped steadily
until the transition, after which it did not change much (curve e
superimposes onto curve d).

Figure 3. (A) Representative contour plot of the reflectance (R) (dotted
lines) and transmittance (T) (solid lines) as a function ofn andk for
film 2 in the visible wavelength range. The curves are labeled according
to %T or %R. Close ton ) k (dashed line), theR andT contours are
nearly parallel, and this causes large errors in the computer determi-
nation of the dielectric function solution to this system of equations.
(B) The computer fits of the data from film 2, as a compressed
continuous bilayer, to theR and T equations. Arrows indicate the
direction of increasing frequency. Both solutions are shown, and a clear
change in the curve is seen when the solutions approach the region
parallel toR andT contours. A decrease in the quality of the fit to the
data is also observed in this region.
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determine the phase shift at a given frequency. The simplest
solution to this problem is to collect data over the largest
frequency range possible and to extrapolate the data in the
regions where no data are available. Significant errors can result
if the data are limited to a small frequency range or if there are
spectral features outside of the measured frequency range. A
mathematically exact solution to this problem exists if there
are other data available that provide the optical constants for at
least two frequencies. In our case, these additional data are
determined from the reflectance data. The application of the
mean value theorem for integrals to the Kramers-Kronig
relation has been previously described,24 but since the detailed
expressions used in the present study differ slightly from those
used by others, the derivation will be summarized below.

First, there is a singularity in eq 12 whenν ) ν0 that causes
problems with numerical integration. This problem is solved
by subtracting the expression

from eq 12. The above integral is analytic (single valued) and
continuous interior to and on a closed simple contour bounded
by the real and imaginary frequency axes in the upper half of
the complex plane.15 Since there is a pole on theReω axis that
can be avoided by applying an infinitesimal semicircle atω )
ω0, there are noenclosedresidues. The residue theorem,Ic f(z)
dz ) 2πi ∑(enclosed residues), applies, and the integral in eq
17 will vanish.25 When eq 17 is subtracted from eq 12, the result
is

This ensures that the singularity found in eq 12 can be avoided
without changing the value of the integral. Velicky`26 first
showed a general proof for this result, which involved expanding
the denominator of the integrand in eq 18 above as a power
series, substituting this series back into eq 18, and taking the
limit as ω approaches infinity.

Next, the frequency range is divided into three regions:27 (0,a)
is zero frequency to the beginning of the data range, (a,b) is
the frequency range of the data, and (b,∞) is from the end of
the data to infinity. Equation 12 then becomes

where

Φ2 can be evaluated numerically on the computer, but since
Φ1 andΦ3 involve frequencies where no data is available, they
must be manipulated further. The second integral in these
expressions is found in a table of integrals,28 and the first integral
is integrated by parts twice to obtain forΦ1

The mean value theorem for integrals is applied to the first
integral to get

whereê is some frequency between zero anda. Similarly for
Φ3:

whereη is some frequency betweenb and infinity. SinceT is
between 0 and 1, it is clear from eqs 24 and 25 thatA must be
positive andB negative, but the exact values of these constants
must be determined from some additional data.A andB may
be determined uniquely by realizing that the measured phase
shift, Φ2(ν0), is zero at frequencies below an absorption.24 If
Φ2(ν0) vanishes, at least at two frequencies in the interval (a,b),
for example, atν ) c or ν ) d, thenA andB can be determined
from the following pair of simultaneous equations:

Equations 26a and 26b show clearly thatν0 should not be
evaluated at the endpointsa andb to avoid singularities there.
Additionally, although this analytical technique is mathemati-
cally exact and, hence, may extend the frequency range over
which the optical constants can be determined, small errors in
the data are amplified into large errors in the optical constants
near the endpoints of the data and should not be trusted there.
The quality of the results is determined by comparing the
reflectance calculated from the optical constants to the reflec-
tance data that were collected. For the results presented here,
the phase shift was obtained from values ofn andk determined
from theR andT fits at frequencies where then andk values
are most certain (in the red region of the spectrum).

(24) Roessler, D. M.Br. J. Appl. Phys.1965, 16, 1119.
(25) Arfken, G. B.; Weber, H. J.Mathematical Methods for Physicists;

Academic Press: San Diego, CA, 1995; p 415.
(26) Velickỳ, B. Czech. J. Phys. B1961, 11, 787.
(27) Stern, F. InSolid State Physics; Seitz, F., Turnbull, D., Eds.;

Academic: New York, 1963; Vol. 15, p 299. (28) CRC integral tables.
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A contour plot ofT andθ as a function ofn andk is shown
in Figure 4A. As with theRandT functions, there are generally
multiple combinations ofn andk that will reproduce the data,
but only the correct solution will appear in both the methods
of determining the optical constants. Fortunately, because the
films we examine here are so thin, only one solution falls within
the physically acceptable bounds ofn andk. In addition, theT
and θ contours are orthogonal to each other, so there is no
ambiguity in the solution for the optical constants. Figure 4B
shows a representative result of then andk calculation with a
comparison to theR and T inversion result. The Kramers-
Kronig result produces a much more precise value ofn andk
in the region of the contour plot wheren ) k and reproduces
the experimental data very well (Figure 4C,D). For all data sets,
only a single solution satisfied both theR andT inversionand
the Kramers-Kronig analysis, showing that a combination of
theRandT inversion and the Kramers-Kronig analysis allows
for the unambiguous determination of the optical constants over
the entire experimental range of frequencies.

V. Results and Discussion

There are several ways to presentε(ω), and perhaps the
simplest is known as a Cole-Cole plot.29 For such a plot, the
x- andy-axes areε1 andε2, respectively, and the points on the
plot correspond to different frequency values. Because the
spectral region that we measured is dominated byωsp, the plots
form a circular arc, with frequency increasing counterclockwise
around the arc.

In Figure 5A we present Cole-Cole plots for the 6-nm
nanocrystal Langmuir monolayer at relatively low compression.

The film represented by the dotted-line trace was compressed
by about 25% (in area) to yield the dashed-line trace. The solid
trace represents the difference between the films. This difference
tells us that the optical properties have not changed muchsthe
resonance has just gotten stronger, mostly due to an increased
density of particles on the trough surface. This is typical for
compressions up to the MI transition. In Figure 5B we present
Cole-Cole plots corresponding to the same film at higher
compressions. The film characterized by the dashed-line circle
was compressed by about 2% from the dotted-line circle. The
difference between these plots is characterized by a negative-
valuedε1(ω) at all measured frequencies. This is the signature
that corresponds to the onset of free electron behavior within
the superlattice, which is the MI phase transition.

In the accompanying paper, Remacle and Levine discuss the
implications of disorder in these films.12 They calculate that
there aretwo quantum phase transitions that might be observed
as a monolayer is compressed. The first corresponds to the
disappearance of the Coulomb gap and is a Mott-type MI
transition. However, if the system is disordered, it will not
exhibit metallic character at that point but will be an insulator
due to localization effects (so-called Anderson localization).
Only upon further compression does the system become truly
metallic. In Figure 6 we present evidence for this localized
phase. In this case the uncompressed film of 8-nm particles (film
1) was already metallic, indicated by the fact thatε1(ω) has a
negative value over much of the measured frequency range.This
means that this monolayer has metallic character eVen when
the particles are at their equilibrium separation distance (∼9
Å). As discussed above, and as previously demonstrated,19 a
bilayer is characterized by higher entropy than the monolayer,
and so collapsing a monolayer provides a mechanism for
increasing disorder in the system. In Figure 6A, we show that
when the monolayer (dotted curve) collapses to form a bilayer
(dashed-line curve), the Cole-Cole plot shifts sharply to the
right. The difference between these two curves (solid trace) is
a relative enhancement of the contribution of the bound(29) Cole, K. S.; Cole, R. H.J. Chem. Phys.1941, 9, 341.

Figure 4. (A) Representative contour plot of the % transmittance
(dotted line) and phase (solid line) as a function ofn andk for a 12-
nm-thick film in the visible wavelength range. The unitless value of
phase is described by eq 19 in the text. (B) The results of the Kramers-
Kronig calculation (solid line) compared to the result of theR andT
inversion for the compressed continuous bilayer data from film 1. The
discontinuity in the data near then ) k line is not present in the
Kramers-Kronig result. (C) Calculated transmittance (solid line) from
the Kramers-Kronig optical constants compared to the original data
(circles). (D) Similar comparison of the reflectance data. The Kramers-
Kronig results are unreliable near the endpoints of the data.

Figure 5. Plots of the real versus the imaginary parts of the dielectric
function for a Langmuir monolayer of 6-nm-diameter Ag nanocrystals
as various compressions. In part A, we present results for the case in
which an insulating film is compressed. The dotted curve represents
the film at 1.2× 104 Å2/particle, while the dashed-line curve represents
the film at 0.9× 104 Å2/particle. The solid-line curve represents the
difference and indicates that only bound states contribute to the observed
changes in optical properties. In part B, the changes observed when
the superlattice becomes metallic are shown. The film is compressed
by a small fraction (∼2%), and the plot shifts to the left. The difference
between these curves is characterized by a negative valueε1 at all
measured frequencies and indicates a free electron contribution to the
dielectric function.
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transitions. Upon further compression, we observe a transition
back to the metallic state (Figure 6B). This observation indicates
that the optical properties, while sensitive probes of free electron
behavior, are not sensitive to the presence of absence of a
Coulomb band gap.

Conclusions

We have reported on the first quantitative measurements of
the insulator-to-metal quantum phase transition in metal quantum
dot superlattices. The complex dielectric function of organically
passivated silver quantum dot monolayers was measured as a
function of interparticle separation distance. An experimental
technique for the simultaneous measurement of reflectance and
transmittance data in quantum dot Langmuir monolayers was

described, and we have presented algorithms for extracting the
complex dielectric function of those monolayers from the
measurements. In particular, we have demonstrated how such
algorithms may be used even in the region wheren andk are
approximately equal and standard Newton-Raphson matrix
inversion techniques do not resolve to a satisfactory solution.
When these algorithms are applied to the analysis of transmit-
tance and reflectance data taken from silver quantum dot
monolayers as they are compressed through the metal/insulator
transition, unambiguous signatures corresponding to the onset
of free electron response are observed. Both the experimental
technique and the algorithms utilized here should be useful for
measuring the dielectric function of both monolayer and
multilayer metal and semiconductor quantum dot superlattices,
and for quantifying the classical and/or quantum nature of
interparticle exchange coupling in those films.

In these measurements, the “total”ε1(ω) has a negative value
only at high frequencies. Based on the low-frequency measure-
ments,10 ε1(ω) must at some point cross from a positive to a
negative value between 10 MHz and the low-frequency limit
of the measurements reported here. That crossover (possibly in
the infrared) represents a collective resonance of the superlattice
that appears only at the onset of metallic behavior. It would be
interesting to extend these measurements toward longer wave-
lengths. When these films become metallic, the electrons are
delocalized, but the positive cores are still obviously localized.
The collective resonance that appears at the MI transition should
contain information relevant to the free electron density in these
unusual metallic films.
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Figure 6. Cole-Cole plots demonstrating the importance of disorder
on the free electron contribution to the dielectric function. In A, a
metallic monolayer (dotted trace) is collapsed into a disordered bilayer
(dashed-line trace), and the difference between the two films (solid
trace) is a relative enhancement of the bound resonances to the optical
response. In B, the collapsed bilayer is further compressed and becomes
metallic again. The measured difference is a purely free electron
contribution.
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